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On p. 75, every occurrence of the superscript p + 1/2 in Eq. (68) and on line 11 
should be changed to p - 1/2. 
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Carsten Eckhardt of Gdttingen has pointed out that the algorithm to determine 
the structure of the Sylow p-subgroup Sp of the class group may only produce a 
subgroup of Sp. In all of the cases in which this algorithm was run we actually 
obtained Sp; hence, the results in Section 5 are not affected by this observation. 
Nevertheless, the complexity result given in the paper has not been proved. This 
difficulty can be overcome by first extending and improving Algorithm 4.1. We first 
note that we may assume that JIz2 is large enough so that R > 1 (see, for example, 
Cusick [1]). 

We let [i (i = 1, 2,... , k) be k reduced ideals of OK with periods Pi = PA" (pi e 
Z), where p is a prime. We put P = P1P2 ... Pk = pi'. Given a reduced ideal j, our 
new algorithm will either determine ti (< pi) (i = 1, 2,. . ., k) such that (4.1) holds 
or establish that no such set of ti's exists. This algorithm executes in O(v/iPifRJzJI') 
elementary operations. We note that if (4.1) holds, then 

k k 

(1) jfJH sri JJa miy)q 
i=1 i=1 

where ti = miqi + ri, mi > 0, 0 < ri < pi. When mi $ 0, we may assume that 
ri < mi and 0 < qi < ti/mi < pi/mi. Given these bounds on ri and qi for a 
fixed set of values of the mix's, we let C, and C2 denote the number of ideal classes 
represented by the left-hand and right-hand side of (1), respectively. 

When P > R, our approach will be to produce a sorted list J of the C, x 
O(R) reduced ideals that could be equivalent to the left-hand side of (1). We 
then determine whether any particular reduced ideal among the C2 ideal classes 
represented by the right-hand side of (1) is in J. If none is, then (4.1) has no 
solution; if one is, then we can easily provide a solution of (1). The number of 
elementary operations needed to do this is O(RCi zAI) + O(C2 IJAI). 
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We consider two subcases. If / < 210g2(h + Y), find s (> 0) such that p8 < 

pP/R and p'+1 > pP/R and find n (> 0) such that 

n 

A= pi< s and A+ ,n+l > S. 
i=l 

Put sy - sA > 0, mi = 0 (i = 1, 2,3, ... ., n), Mn+1 = p", mi = 1 (i = n + 2, 
n + 3,..., k). In this subcase, 

n k 

Ci < mn+l pi = p' and C2 < P 1 71 Pi = P/P8. 
i= 1 i=n+1 

Since O(RC1) = O(),O(C2) = OQ\/iPR), and OT < 210g2(h + Y) < 
210g2(h+2Y) = O(IAI':), we see that we need to perform 0(x1i'1PiRt6'I) elementary 
operations. 

When ,/' > 210g2(h + Y) > 2logh > 2k, we put Pi = 1(p/R1/1)A, > 1 and 
note that P1P2 * Pk = P/R. If Mi = [pi] and Ni = Mi + 1, we get 

k k 

fJ M < P/R and flN > P/R. 
i=1 i=l 

Find the least value of n (> 1) such that 

n k 

fJ N fJ Mt > P/R. 
i=1 i=n+1 

Put mi = Mi (i = 1, 2,..., n), Mi = N, (i = n +1, n +2,.. .,k). Since Nn/Mn < 2, 
we have P/R < 1 mi < 2P/R. Also, C <? Hl=1 mi and 

i=1 i=1 
k k k \ 

C2 < t(pi/mi +1) < T|Rf(l+ mi/pi) < e-Rxp E mi/pi) 
i=l i=l i=l 

Since mi/pi < 2/(pR11h)/,/2 and %/ > 2k, we have Ei=l mi/pi = 0(1). 
Thus, in this subcase we need to perform O(x1i'PiRt~z1I) elementary operations. 
When P < R, we put mi = 0 (i = 1, 2,3, ..., k). Here we have C1 < P and 

C2 = 1. If we put S = v/PifR and use Algorithm 2.1 in the manner suggested in the 
second case of Algorithm 4.1, we can determine whether or not (4.1) has a solution 
in 

O(SJA 1I) + O(PRI JA/S) = O(,vlIz JI) 

elementary operations. 
We also require a simple result from group theory. We let H be an abelian 

p-group such that 
H= (gl) x (92) X ... X (9k), 

where I(gi)I = p. Consider gk+?1 where I(gk+ 1)I = p/k+1 and let G be the group 
(H, 9k+1). Let Ak+j be the least nonnegative integer such that 

k 
pAk+ 1 - I 

i=l 
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where ti = pAzmi, (mtIp) = 1, 0 < Ai < pi. If no such value of Ak+1 exists, then 
G = H x (ak+1); otherwise, let p = min{A1, A2,... , Ak+, } and put 

( m p~ - _pAk+1 - 

a- g1 i Jgk+1 
It is now a simple matter to prove the following 

THEOREM. If p = Ak+l, then G = H x (9); if p = Aj (j $ k + 1), then 
G= (Hagk+1) x (9), where 

Hi = (91) X (92) X ... X (aj-1) X (aj+i) X ... X (9a). 

By using this theorem, it is easy to show that if 91, 92X .... X am generate an abelian 
p-group Sp of order pn, then we need to utilize O(nm2) determinations like (2) to 
find the group structure of Sp. Combining this with our algorithm above and the 
arguments used in the last paragraph of Section 4, we now see that algorithms for 
determining h and the class group structure can be developed which will execute 
in O(JI'I/5+?) and O(II11/4+?) elementary operations, respectively. 
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